If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17600=50n+20n^2/2
We move all terms to the left:
17600-(50n+20n^2/2)=0
We get rid of parentheses
-20n^2/2-50n+17600=0
We multiply all the terms by the denominator
-20n^2-50n*2+17600*2=0
We add all the numbers together, and all the variables
-20n^2-50n*2+35200=0
Wy multiply elements
-20n^2-100n+35200=0
a = -20; b = -100; c = +35200;
Δ = b2-4ac
Δ = -1002-4·(-20)·35200
Δ = 2826000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2826000}=\sqrt{3600*785}=\sqrt{3600}*\sqrt{785}=60\sqrt{785}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-60\sqrt{785}}{2*-20}=\frac{100-60\sqrt{785}}{-40} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+60\sqrt{785}}{2*-20}=\frac{100+60\sqrt{785}}{-40} $
| 3u+4.3=19.6 | | √x+8x-4=9x+8 | | 4=-2-3x | | (x-1)^7/2-(x-1)^3/2=0 | | 6.2=(2^x)/3 | | 4(x-3)/6=2(x+2)/8 | | 3x+0.3=35 | | -2u+-5.2=-10 | | 4p-24=96 | | 6.2=2^x/3 | | 2h-2.8=9.2 | | 4=3m+2 | | (5(x-1))/6-(3(2-x))/8=2x | | 2u+7.3=8.3 | | 3c+9=3(c+3) | | R=61/2r | | -2(2+m)=0 | | -3(-6x+1)=141 | | 8x-5=13x+7 | | 4x-27+5x-9=7x-10 | | 3(b-12.71)=14.76 | | x+(x+1)+(x+2)+(x+3)=390 | | -1/4(32^2)+8=5x^2+10 | | 6.84+3v=15.84 | | 0.2=x^2/65-x | | 3(x+1)-5x=12-6x-7 | | 4x+5x-9=7x-10 | | 5=12x+x | | P(x)=x3-2x2-x+2=0 | | -6(1-n)+n=20-6n | | 3.2+3.2c=6.06 | | -x=5+6(x+5) |